Supersymmetric gauge theories, quivers and Painlevé equations

Andrei Marshakov

Center for Advanced Studies, Skoltech

New Mathematical Methods in Solvable Models and Gauge/String Dualities
Varna, August 2022

Introduction:

joint with M.Bershtein, P.Gavrylenko and M.Semenyakin

New mathematical methods:

- SUSY gauge theories and integrable systems (>25 years);
- Quivers: cluster algebras (> 20 years);
- Cluster integrable systems (> 10 years);
- ...
- Painlevé equations (> 100 years);

Introduction:

Relation with gauge/string duality: partition function $Z=\mathcal{T}$ as a tau-function ...

Here:

- (Dual) Nekrasov instanton partition function (Fourier-transformed 2d conformal blocks);
- 5d SYM on $\mathbb{R}^{4} \times S_{R}^{1}$ (topological strings on non-compact CY?);
- (q-difference) isomondromic tau-function (Painlevé etc).

Introduction:

Solution to:

- Integrable system (classical or quantum: $\Omega_{\epsilon_{1} \epsilon_{2}}$-background);
- on a Poisson cluster variety (relativistic/group or 5d);
- Non-autonomous version: (q-difference!) Painlevé equations (q-isomonodromic deformations?);

Parameters: $\left(q, p \sim e^{\hbar}\right) \sim\left(e^{R \epsilon_{1}}, e^{R \epsilon_{2}}\right) \ldots$

Effective description

- GK integrable systems on Poisson cluster varieties (with their Hamiltonian or cluster?) reductions;
- Quivers and their mutations : discrete flows \& cluster (symmetry!) group $\mathcal{G}_{\mathcal{Q}}$;
-
- Almost completed: $S U(2)$ gauge group with $N_{f}<8$ (5d!) and q-Painlevé family;
- Flat-connections and Fock-Goncharov or 4d story ... (Ruijsenaars, DAHA?);
- Relation with BPS-quivers etc.

Integrable system: GK

Dimers on bipartite graphs

$\Gamma \subset \mathbb{T}^{2}$

- Domains of square lattice: $2 \times N$ (Toda) and $N \times M$ 'fence-net' XXZ-type spin chain;
- Triangle NP: hexagonal GK graphs;

Dimers \mapsto loops: $\partial D=\sum \bullet-\sum \circ$, so that

$$
D-D_{0}=\partial F+\gamma \quad\left(\in H_{1}\left(\mathbb{T}^{2}\right)\right)
$$

GK construction

- Dimer partition function defines $\mathcal{C} \subset \mathbb{C}^{\times} \times \mathbb{C}^{\times}$:

$$
f_{\Delta}(\lambda, \mu)=\sum_{(a, b) \in \Delta} \lambda^{a} \mu^{b} f_{a, b}(x)=0
$$

instead of $\operatorname{det}(\mu+g(\lambda))=0$ (with $\left.g(\lambda) \in \widehat{G}^{\natural}\right)$;

- $\Delta \subset \mathbb{Z}^{2} \subset \mathbb{R}^{2}$: convex NP (up to $S A(2, \mathbb{Z})=S L(2, \mathbb{Z}) \ltimes \mathbb{Z}^{2}$);
- Δ with $\frac{d \lambda}{\lambda} \wedge \frac{d \mu}{\mu}$: SW data for 5d SYM (when known!).

GK duality

- Fat graph structures - duality of faces (on \mathbb{T}^{2}) and zig-zag paths (dual surface Σ);
- Zig-zag paths on $\mathbb{T}^{2} \simeq$ boundaries of faces on $\Sigma \simeq$ boundaries of Δ;
- Intersection form $\langle\bullet, \bullet\rangle_{\Sigma}$ on $H_{1}(\Sigma)$: Poisson quiver \mathcal{Q} with face variables at vertices $\left\{x \mid \prod_{f} x_{f}=1\right\}$;
- Intersection form $\langle\bullet, \bullet\rangle_{\mathbb{T}^{2}}$ on $H_{1}\left(\mathbb{T}^{2}\right)$: zig-zag quiver \mathcal{Q}_{ζ} with zig-zag's at vertices $\sum \zeta=0$.

GK duality

E.g.

defines the bracket

$$
\left\{x_{i}, x_{i+1}\right\}_{\mathcal{Q}}=2 x_{i} x_{i+1}, \quad i=1, \ldots, 4
$$

GK duality

- $\sum \zeta=0, \#(i \rightarrow j)=\left\langle\zeta_{i}, \zeta_{j}\right\rangle_{\mathbb{T}}=\zeta_{i} \times \zeta_{j} ;$
- $\operatorname{rank}\left(\mathcal{Q}_{\zeta}\right)=2, \varpi=\frac{d \lambda}{\lambda} \wedge \frac{d \mu}{\mu}$ for $(\lambda, \mu) \in H^{1}\left(\mathbb{T}^{2}\right)$.

Sometimes - self-duality (Painlevé)!

Quiver mutations

Mutations

of the graph:

$$
\mu_{j}: \epsilon_{i k} \mapsto-\epsilon_{i k}, \text { if } i=j \text { or } k=j, \quad \epsilon_{i k} \mapsto \epsilon_{i k}+\frac{\epsilon_{i j}\left|\epsilon_{j k}\right|+\epsilon_{j k}\left|\epsilon_{i j}\right|}{2} \quad \text { otherwise, }
$$

and x-variables:

$$
\mu_{j}: \quad x_{j} \rightarrow \frac{1}{x_{j}}, \quad x_{i} \rightarrow x_{i}\left(1+x_{j}^{\operatorname{sgn}\left(\epsilon_{i j}\right)}\right)^{\epsilon_{i j}}, i \neq j
$$

Poisson quivers

Poisson map:

$$
\left\{x_{i}^{\prime}, x_{k}^{\prime}\right\}_{\mathcal{Q}^{\prime}}=\epsilon_{i k}^{\prime} x_{i}^{\prime} x_{k}^{\prime}
$$

in addition to gluing, forgetting etc

- At 4 -valent vertices (squares): a spider move of bipartite graph on base \mathbb{T}^{2};
- At higher vertices (e.g. hexagons): pushes out of GK construction with \mathbb{T}^{2}.

ζ-quiver mutations

$$
\mu_{k}\left(\zeta_{i}\right)= \begin{cases}\zeta_{i}+\left[\varepsilon_{i k}\right]_{+} \zeta_{k}, & i \neq k \\ -\zeta_{i}, & i=k\end{cases}
$$

Result of ζ-quiver mutation (Gaiotto transform):

- Another NP with $g=g_{0}$;
- NP with $g>g_{0}$ with special coefficients, examples:

Cluster integrable system

- Boundary coefficients $\left\{f_{a, b}(x) \mid(a, b) \in \partial \Delta\right\}$ are Casimir functions;
- Their number is $B-2=B-3+1$, with an extra $q=\prod_{f} x_{f}$, $B=\#$ boundary segments $=\#$ zig-zag paths on $\Gamma \subset \mathbb{T}^{2}$;
- $\{\vec{H}(x)\}$ are (normalized!) coefficients of dimer partition function $\left\{f_{a, b}(x)\right\}$, corresponding to internal $a, b) \in \Delta \backslash \partial \Delta$;
- $\left\{H_{l}, H_{J}\right\}_{\mathcal{Q}}=0, I, J=1, \ldots, g$ (r-matrix bracket from group theory).

Cluster integrable system

Integrability: Pick's formula

$$
\operatorname{dim} \mathcal{X}=2 \operatorname{Area}(\Delta)=B-2+2 g
$$

Alternatively $V-E+F=0$ for $\Gamma \subset \mathbb{T}^{2}$, and $V-E+B=2-2 g$ for $\Gamma \subset \Sigma$, hence

$$
F=E-V=B-2+2 g
$$

In GK construction $q=\prod_{f} x_{f}=1$, breaking $q \neq 1$ is deautonomization.

Discrete flow: example

For $q=1$ the flow $T=(12)(34) \circ \mu_{3} \circ \mu_{1}: \mathcal{Q} \mapsto \mathcal{Q}$

$$
T:\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{2}\left(\frac{1+x_{3}}{1+x_{1}^{-1}}\right)^{2}, x_{1}^{-1}, x_{4}\left(\frac{1+x_{1}}{1+x_{3}^{-1}}\right)^{2}, x_{3}^{-1}\right)
$$

or

$$
T:\left(x_{1}, x_{2}, z, q\right) \mapsto\left(x_{2}\left(\frac{x_{1}+z}{x_{1}+1}\right)^{2}, x_{1}^{-1}, q z, q\right) \underset{q=1}{=}\left(x_{2}\left(\frac{x_{1}+z}{x_{1}+1}\right)^{2}, x_{1}^{-1}, z, q\right)
$$

preserves the Hamiltonian $\mathcal{H}=\sqrt{x_{1} x_{2}}+\frac{1}{\sqrt{x_{1} x_{2}}}+\sqrt{\frac{x_{1}}{x_{2}}}+z \sqrt{\frac{x_{2}}{x_{1}}}$.

Deautonomization: Painlevé

Let $x_{1} x_{2} x_{3} x_{4}=q \neq 1$

$$
T:\left(x_{1}, x_{2}, z, q\right) \mapsto\left(x_{2}\left(\frac{x_{1}+z}{x_{1}+1}\right)^{2}, x_{1}^{-1}, q z, q\right)
$$

Consider z as "time" $T: x(z) \mapsto x(q z)$, then $x_{1}=x(z), x_{2}=x^{-1}\left(q^{-1} z\right)$, satisfy

$$
x(q z) x\left(q^{-1} z\right)=\left(\frac{x(z)+z}{x(z)+1}\right)^{2}
$$

or q-Painlevé III_{3} equation.

Discrete integrability

- MCG $\mathcal{G}_{\mathcal{Q}}: \mathcal{Q} \mapsto \mathcal{Q}$, generated by quiver mutations (and permutations);
- $\mathcal{G}_{\mathcal{Q}} \supset \mathcal{G}_{\Delta}=\mathbb{Z}^{\#} \oplus$ finite - Abelian group of discrete flows;
- $\mathcal{G}_{\mathcal{Q}} \supset \widehat{W}$, affine Weyl group, when non-Abelian;

At $q=1$

- $\{\vec{H}\}$ are cluster functions, invariant wrt $\mathcal{G}_{\mathcal{Q}}$;
- Only $\widehat{W} \subset W \curvearrowright \mathcal{C}$, while $\mathcal{G}_{\Delta} \curvearrowright \operatorname{Pic}(\mathcal{C})$;
- W extends to global symmetry of 5d theory in UV (?!)

At $q \neq 1 \mathcal{G}_{\mathcal{Q}}$ is a symmetry-group of a non-autonomous system ...

Painlevé NP

with a single internal point and $3 \leq B \leq 9$ boundary points:

Here \mathcal{C} : $f_{\Delta}(\lambda, \mu)=\sum_{(a, b) \in \Delta} \lambda^{a} \mu^{b} f_{a, b}=0$ is obviously a torus $g=1$.

Painlevé quivers

Notations: Sakai classification

by (surface type)/(symmetry group)

- $\mathcal{G}_{\mathcal{Q}} \supset \widehat{W}\left(E_{\#}^{(1)}\right)$;
- $\widehat{W}\left(E_{0}^{(1)}\right)=\mathbb{Z} / 3 \mathbb{Z}$;
- From $E_{1}^{(1)}=A_{1}^{(1)}$ till $E_{5}^{(1)}=D_{5}^{(1)}$ q-Painlevé with well-defined 4d limit (from PIII to PVI);
- Higher $E_{7}^{(1)}$ and $E_{8}^{(1)}$ do not have corresponding (naive) $g=1$ triangles.

Extension for Painlevé

$$
g_{r}=g-\sum_{i=1}^{N_{r}} \frac{h_{i}\left(h_{i}-1\right)}{2} d_{i}
$$

$E_{6}^{(1)}: B=9, g=1$ versus reduced $B=10, g=2, h=2$

$E_{7}^{(1)}$: reduced $B=12, g=4, h=3$ versus double-reduced $B=12, g=3$, $h_{1}=h_{2}=2$

Extension for Painlevé

$E_{8}^{(1)}$: double-reduced $B=15, g=7, h_{1}=h_{2}=3$ versus triple-reduced $B=18$, $g=10, h_{1}=h_{2}=3, h_{3}=2, d_{3}=3$.

- Reductions of higher-rank gauge theories;
- Flavor symmetry restored from discrete symmetry of an integrable/Painlevé system.

GK-reductions

Theorem (Conjecture):

A NP with side of length $d \cdot h$ and fixed vertex at a distance h gives rise to a cluster reduction of corresponding GK system by fixing $(h-1)$ original Casimir functions, and imposing $\frac{h(h-1)}{2}$ Hamiltonian constraints, which reduces the dimension of the (Poisson) phase space by

$$
\left(h-1+2 \frac{h(h-1)}{2}\right) d=\left(h^{2}-1\right) d
$$

Actual (smooth-) genus reduction

$$
g_{r}=g-\frac{h(h-1)}{2} d
$$

New class (extended-GK) of cluster integrable systems.

GK-reductions

- Hamiltonian/Poisson reduction: $\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{h-1}\right\}$ and $\left\{\mathrm{H}_{i j} \mid 1 \leq i<j \leq h\right\}$ so that

$$
\mathcal{R}: \mathrm{C}_{i}=\mathrm{H}_{i, i+1}=1, \quad \mathrm{H}_{i j}=0
$$

- Poisson (better - quantum!) algebra is isomorphic to the Sevostyanov algebra.
- $\mathcal{X} / / \mathcal{R}$ has a structure of cluster Poisson variety, $\mathcal{Q} \mapsto \mathcal{Q}_{\mathcal{R}}$ (mutation classes) by Poisson maps;
- No clear transformation for the bipartite graph: beyong the GK construction on \mathbb{T}^{2}.

Local example: hexagonal lattice $2 l \times h$ gives cluster structure on $\operatorname{Gr}(h, I)=\operatorname{Gr}(I-h, I) ; h>I$ realized in 4d or FG (flat connections) story \ldots

Global examples: q-Painlevé ...

Higher Painlevé systems

q-PVI case, with $E_{5}^{(1)}=D_{5}^{(1)}$ symmetry, and limit to 4 d .

last case with $E_{6}^{(1)}$ symmetry $g=1 \mathrm{NP}$ within $\mathcal{Q}_{\zeta^{-}}$-mutation class.
Notation: circle with red number \equiv a group of identical vertices.

Higher Painlevé cases

Theorem (Conjecture):

q-Painlevé $E_{7}^{(1)}$ - and $E_{8}^{(1)}$-symmetry can be realized as deautonomization of the GK-reduced cluster integrable systems.

... since there are no corresponding NP with (naive) $g=1$.

q-Painlevé $E_{7}^{(1)}$

- Reduction from higher-rank or quiver 5d gauge theories;
- Counting:

$$
\begin{gathered}
2 \cdot \text { Area }-2\left(h^{2}-1\right)=16-2 \cdot 3=10 \\
B-2=2(N+M)-2=10, \quad 2(h-1)=2
\end{gathered}
$$

- Result:

$$
\begin{aligned}
& H=\frac{1}{\sqrt{x_{0} x_{1} x_{2} x_{3} x_{4} x_{5} x_{x} x_{x} x_{8}}}\left(1+x_{0}^{2} x_{1} x_{2} x_{3} x_{4} x_{5}^{3} x_{6} x_{7} x_{8}\left(\left(1+x_{6}\right)\left(1+x_{8}\right)+x_{7}\left(1+x_{6}+\right.\right.\right. \\
& \left.\left.\left(1+x_{6}+x_{0} x_{6}\right)_{8}\right)\right)+x_{5}\left(1+x_{6}+x_{8}+x_{6} x_{8}+x_{0} x_{6} x_{8}+x_{7}\left(1+x_{6}+x_{0} x_{6}+(1+\right.\right. \\
& x_{0}+x_{6}+x_{0}^{2}\left(1+x_{1}\right)\left(1+x_{2}\right)\left(1+x_{3}\right)\left(1+x_{4}\right) x_{6}+x_{0}\left(2+x_{1}+x_{2}+x_{3}+\right. \\
& \left.\left.\left.\left.\left.x_{4}\right) x_{6}\right) x_{8}\right)\right)+x_{0}^{2} x_{5}^{2} x_{6} x_{7} x_{8}\left(\left(x_{1}+x_{2}\right) x_{3} x_{4}+x_{1} x_{2}\left(x_{3}+x_{4}+x_{3} x_{4}\left(2+x_{6}+x_{7}+x_{8}\right)\right)\right)\right) \\
& q=x_{0}^{2} x_{1} x_{2} x_{3} x_{4} x_{5}^{2} x_{6} x_{7} x_{8} x_{9}
\end{aligned}
$$

- a non-GK case ...

Cluster reduction

q-Painlevé $E_{7}^{(1)}$

Results in:

generates $W\left(E_{7}^{(1)}\right)$:

$$
\begin{gathered}
\sigma_{1}=s_{12}, \quad \sigma_{2}=s_{23}, \quad \sigma_{3}=s_{34} \\
\sigma_{5}=s_{67}, \quad \sigma_{6}=s_{78}, \quad \sigma_{7}=s_{89} \\
\sigma_{4}=\mu_{4} \mu_{6} s_{46}, \quad \sigma_{0}=\mu_{5} \mu_{0} s_{50}
\end{gathered}
$$

Further perspectives

- Similar reduction results in Painlevé $E_{8}^{(1)}$, to be completed;
- Towards 4d or the 'Fock-Goncharov framework' - moduli spaces of flat connections: cluster integrable system arise after reduction (Ruijsenaars, reduced spin chains ...);
- Relation with other non-GK cluster cases (BCD - series, reflection equations, Schrader-Shapiro, ...);
- ... etc

What else it gives for YM and strings?

