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Introduction:

joint with M.Bershtein, P.Gavrylenko and M.Semenyakin

New mathematical methods:

SUSY gauge theories and integrable systems (> 25 years);

Quivers: cluster algebras (> 20 years);

Cluster integrable systems (> 10 years);

...

Painlevé equations (> 100 years);
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Introduction:

Relation with gauge/string duality: partition function Z = T as a tau-function ...

Here:

(Dual) Nekrasov instanton partition function (Fourier-transformed 2d
conformal blocks);

5d SYM on R4 × S1
R (topological strings on non-compact CY?);

(q-difference) isomondromic tau-function (Painlevé etc).
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Introduction:

Solution to:

Integrable system (classical or quantum: Ωε1ε2 -background);

on a Poisson cluster variety (relativistic/group or 5d);

Non-autonomous version: (q-difference!) Painlevé equations
(q-isomonodromic deformations?);

Parameters: (q, p ∼ e~) ∼ (eRε1 , eRε2 ) ...
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Effective description

GK integrable systems on Poisson cluster varieties (with their Hamiltonian or
cluster?) reductions;

Quivers and their mutations : discrete flows & cluster (symmetry!) group GQ;

....

Almost completed: SU(2) gauge group with Nf < 8 (5d!) and q-Painlevé
family;

Flat-connections and Fock-Goncharov or 4d story ... (Ruijsenaars, DAHA?);

Relation with BPS-quivers etc.
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Integrable system: GK

Bipartite graph on torus

Family of spectral curves
=

Newton polygon
Quiver
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Dimers on bipartite graphs

Γ ⊂ T2

Domains of square lattice: 2× N (Toda) and N ×M ’fence-net’ XXZ-type
spin chain;

Triangle NP: hexagonal GK graphs;

Dimers 7→ loops: ∂D =
∑
• −

∑
◦, so that

D − D0 = ∂F + γ (∈ H1(T2))
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GK construction

Dimer partition function defines C ⊂ C× × C×:

f∆(λ, µ) =
∑

(a,b)∈∆

λaµbfa,b(x) = 0

instead of det(µ+ g(λ)) = 0 (with g(λ) ∈ Ĝ \);

∆ ⊂ Z2 ⊂ R2: convex NP (up to SA(2,Z) = SL(2,Z) n Z2);

∆ with dλ
λ ∧

dµ
µ : SW data for 5d SYM (when known!).
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GK duality

Fat graph structures – duality of faces (on T2) and zig-zag paths (dual
surface Σ);

Zig-zag paths on T2 ' boundaries of faces on Σ ' boundaries of ∆;

Intersection form 〈•, •〉Σ on H1(Σ): Poisson quiver Q with face variables at
vertices {x |

∏
f xf = 1} ;

Intersection form 〈•, •〉T2 on H1(T2): zig-zag quiver Qζ with zig-zag’s at
vertices

∑
ζ = 0.

A.Marshakov Supersymmetric gauge theories, quivers and Painlevé equations August 16, 2022 9 / 32



GK duality

E.g.

1 4

32

1 4

32

defines the bracket

{xi , xi+1}Q = 2xixi+1, i = 1, . . . , 4
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GK duality

4 3

21

∑
ζ = 0, #(i → j) = 〈ζi , ζj〉T = ζi × ζj ;

rank (Qζ ) = 2, $ = dλ
λ ∧

dµ
µ for (λ, µ) ∈ H1(T2).

Sometimes – self-duality (Painlevé)!
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Quiver mutations

Mutations
of the graph:

µj : εik 7→ −εik , if i = j or k = j , εik 7→ εik +
εij |εjk |+ εjk |εij |

2
otherwise,

and x-variables:

µj : xj →
1

xj
, xi → xi

(
1 + x

sgn(εij )
j

)εij
, i 6= j
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Poisson quivers

Poisson map:
{x ′i , x ′k}Q′ = ε′ikx

′
i x
′
k

in addition to gluing, forgetting etc

At 4-valent vertices (squares): a spider move of bipartite graph on base T2;

At higher vertices (e.g. hexagons): pushes out of GK construction with T2.
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ζ-quiver mutations

µk(ζi ) =

{
ζi + [εik ]+ ζk , i 6= k
−ζi , i = k

Result of ζ-quiver mutation (Gaiotto transform):

Another NP with g = g0;

NP with g > g0 with special coefficients, examples:
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Cluster integrable system

Boundary coefficients {fa,b(x)|(a, b) ∈ ∂∆} are Casimir functions;

Their number is B − 2 = B − 3 + 1, with an extra q =
∏

f xf ,
B = # boundary segments = # zig-zag paths on Γ ⊂ T2;

{ ~H(x)} are (normalized!) coefficients of dimer partition function {fa,b(x)},
corresponding to internal a, b) ∈ ∆ \ ∂∆;

{HI ,HJ}Q=0, I , J = 1, . . . , g (r -matrix bracket from group theory).
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Cluster integrable system

Integrability: Pick’s formula

dimX = 2Area(∆) = B − 2 + 2g

Alternatively V − E + F = 0 for Γ ⊂ T2, and V − E + B = 2− 2g for Γ ⊂ Σ,
hence

F = E − V = B − 2 + 2g

In GK construction q =
∏

f xf = 1, breaking q 6= 1 is deautonomization.
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Discrete flow: example

For q = 1 the flow T = (12)(34) ◦ µ3 ◦ µ1 : Q 7→ Q

T : (x1, x2, x3, x4) 7→

(
x2

(
1 + x3

1 + x−1
1

)2

, x−1
1 , x4

(
1 + x1

1 + x−1
3

)2

, x−1
3

)
or

T : (x1, x2, z , q) 7→

(
x2

(
x1 + z

x1 + 1

)2

, x−1
1 , qz , q

)
=
q=1

(
x2

(
x1 + z

x1 + 1

)2

, x−1
1 , z , q

)

preserves the Hamiltonian H =
√
x1x2 + 1√

x1x2
+
√

x1

x2
+ z
√

x2

x1
.
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Deautonomization: Painlevé

Let x1x2x3x4 = q 6= 1

T : (x1, x2, z , q) 7→

(
x2

(
x1 + z

x1 + 1

)2

, x−1
1 , qz , q

)

Consider z as “time” T : x(z) 7→ x(qz), then x1 = x(z), x2 = x−1(q−1z), satisfy

x(qz)x(q−1z) =

(
x(z) + z

x(z) + 1

)2

or q-Painlevé III3 equation.
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Discrete integrability

MCG GQ : Q 7→ Q, generated by quiver mutations (and permutations);

GQ ⊃ G∆ = Z# ⊕ finite – Abelian group of discrete flows;

GQ ⊃ Ŵ , affine Weyl group, when non-Abelian;

At q = 1

{ ~H} are cluster functions, invariant wrt GQ;

Only Ŵ ⊂W y C, while G∆ y Pic(C);

W extends to global symmetry of 5d theory in UV (?!)

At q 6= 1 GQ is a symmetry-group of a non-autonomous system ...
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Painlevé NP

with a single internal point and 3 ≤ B ≤ 9 boundary points:

3 4a 4b 4c 5a 5b 6a 6b

6c 6d 7a 7b 8a 8b 8c 9

Here C: f∆(λ, µ) =
∑

(a,b)∈∆ λ
aµbfa,b = 0 is obviously a torus g = 1.
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Painlevé quivers
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Notations: Sakai classification

A
(1)
0

E
(1)
8

→ A
(1)
1

E
(1)
7

→ A
(1)
2

E
(1)
6

→ A
(1)
3

E
(1)
5

→ A
(1)
4

E
(1)
4

→ A
(1)
5

E
(1)
3

→ A
(1)
6

E
(1)
2

↗ A
(1)
7

Ã1
1

→ A
(1)
8

E
(1)
0

↘ A
(1)′

7

E
(1)
1

by (surface type)/(symmetry group)

GQ ⊃ Ŵ (E
(1)
# );

Ŵ (E
(1)
0 ) = Z/3Z;

From E
(1)
1 = A

(1)
1 till E

(1)
5 = D

(1)
5 q-Painlevé with well-defined 4d limit (from

PIII to PVI);

Higher E
(1)
7 and E

(1)
8 do not have corresponding (naive) g = 1 triangles.
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Extension for Painlevé

gr = g −
Nr∑
i=1

hi (hi − 1)

2
di

E
(1)
6 : B = 9, g = 1 versus reduced B = 10, g = 2, h = 2

E
(1)
7 : reduced B = 12, g = 4, h = 3 versus double-reduced B = 12, g = 3,

h1 = h2 = 2
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Extension for Painlevé

E
(1)
8 : double-reduced B = 15, g = 7, h1 = h2 = 3 versus triple-reduced B = 18,

g = 10, h1 = h2 = 3, h3 = 2, d3 = 3.

Reductions of higher-rank gauge theories;

Flavor symmetry restored from discrete symmetry of an integrable/Painlevé
system.
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GK-reductions

Theorem (Conjecture):

A NP with side of length d · h and fixed vertex at a distance h gives rise to a
cluster reduction of corresponding GK system by fixing (h − 1) original Casimir

functions, and imposing h(h−1)
2 Hamiltonian constraints, which reduces the

dimension of the (Poisson) phase space by(
h − 1 + 2

h(h − 1)

2

)
d = (h2 − 1)d

Actual (smooth-) genus reduction

gr = g − h(h − 1)

2
d

New class (extended-GK) of cluster integrable systems.
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GK-reductions

Hamiltonian/Poisson reduction: {C1, . . . , Ch−1} and {Hij |1 ≤ i < j ≤ h} so
that

R : Ci = Hi,i+1 = 1, Hij = 0

Poisson (better – quantum!) algebra is isomorphic to the Sevostyanov
algebra.

X//R has a structure of cluster Poisson variety, Q 7→ QR (mutation classes)
by Poisson maps;

No clear transformation for the bipartite graph: beyong the GK construction
on T2.

Local example: hexagonal lattice 2l × h gives cluster structure on
Gr(h, l) = Gr(l − h, l); h > l realized in 4d or FG (flat connections) story ...

Global examples: q-Painlevé ...
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Higher Painlevé systems

2 2

22

q-PVI case, with E
(1)
5 = D

(1)
5 symmetry, and limit to 4d.

3

33

last case with E
(1)
6 symmetry g = 1 NP within Qζ-mutation class.

Notation: circle with red number ≡ a group of identical vertices.
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Higher Painlevé cases

Theorem (Conjecture):

q-Painlevé E
(1)
7 - and E

(1)
8 -symmetry can be realized as deautonomization of the

GK-reduced cluster integrable systems.

4 1

41

9

1 1

... since there are no corresponding NP with (naive) g = 1.
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q-Painlevé E
(1)
7

Reduction from higher-rank or quiver 5d gauge theories;

Counting:
2 ·Area− 2(h2 − 1) = 16− 2 · 3 = 10

B − 2 = 2(N + M)− 2 = 10, 2(h − 1) = 2

Result:
H = 1√

x0x1x2x3x4x5x6x7x8
(1 + x2

0 x1x2x3x4x
3
5 x6x7x8((1 + x6)(1 + x8) + x7(1 + x6 +

(1 + x6 + x0x6)x8)) + x5(1 + x6 + x8 + x6x8 + x0x6x8 + x7(1 + x6 + x0x6 + (1 +
x0 + x6 + x2

0 (1 + x1)(1 + x2)(1 + x3)(1 + x4)x6 + x0(2 + x1 + x2 + x3 +
x4)x6)x8)) +x2

0 x
2
5 x6x7x8((x1 +x2)x3x4 +x1x2(x3 +x4 +x3x4(2 +x6 +x7 +x8))))

q = x2
0 x1x2x3x4x

2
5 x6x7x8x9

– a non-GK case ...
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Cluster reduction
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q-Painlevé E
(1)
7

Results in:

c ′4

d ′
2 d ′

4

b′
2 b′

4

a′4

b′
1 b′

3

d ′
1 d ′

3

X5

X6 X8

X7 X9

X0

X2 X4

X1 X3

generates W (E
(1)
7 ):

σ1 = s12, σ2 = s23, σ3 = s34

σ5 = s67, σ6 = s78, σ7 = s89

σ4 = µ4µ6s46, σ0 = µ5µ0s50
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Further perspectives

Similar reduction results in Painlevé E
(1)
8 , to be completed;

Towards 4d or the ’Fock-Goncharov framework’ – moduli spaces of flat
connections: cluster integrable system arise after reduction (Ruijsenaars,
reduced spin chains ...);

Relation with other non-GK cluster cases (BCD - series, reflection equations,
Schrader-Shapiro, ...);

... etc

What else it gives for YM and strings?
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